FORCE BETWEEN TWO POINT CHARGES

$$F_E = k_e \frac{Q_1 Q_2}{r^2} \hat{r}$$

$$F_E = k_e \frac{Q_1 Q_2}{r^2} \hat{r}$$

$$k_e = 9x10^9 \frac{N - m^2}{C^2}$$

 Q_1, Q_2 same sign

$$F_{\scriptscriptstyle E} \parallel \hat{r}$$

REPULSIVE (Both Forces Outward)

 Q_1, Q_2 have opposite signs. $F_E \parallel - \hat{r}$ (Both Forces Inward)

ATTRACTIVE

FORCE BETWEEN TWO POINT MASSES

$$F_{G} = -\frac{GM_{1}M_{2}}{r^{2}}\hat{r}$$

$$G = 6.7x10^{-11} \frac{N - m^{2}}{(kg)^{2}}$$

 F_{G} ALWAYS ATTRACTIVE

 $F_G \parallel -\hat{r}$ (Both Forces Inward)

NOTICE THAT THE FORCES OCCUR AS ACTION-REACTION PAIRS IN EVERY CASE.

$$\begin{bmatrix} F_{12} = -F_{21} \\ \rightarrow \end{bmatrix}$$

The Equations Represent Two Forces

Many Point Charges Force on Q

$$F_i = k_e \frac{\sum_{j \neq i} Q_j Q_j}{j \neq i} \hat{r}_{ij}^2$$

Note: Right side involves addition of vectors.

SPECIAL CASES

1. Q_1 at x=0, Q_2 at x=L. Where to locate Q_3 so F_3 force on Q_3 is zero.

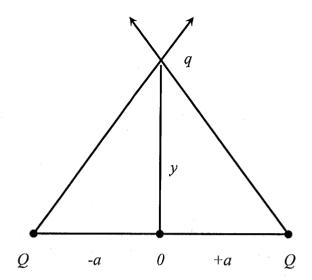
 Q_3 must be on the line joining Q_1 and Q_2 .

$$x = \frac{L}{1 + \sqrt{\frac{Q_2}{Q_1}}}$$

2. Q_1 at x=0, $-|Q_2|$ at x=L. F_3 will be zero if

$$x = \frac{L}{\sqrt{\frac{Q_1}{Q_2} - 1}} \quad \text{when } Q_1 > |Q_2|$$

3. Q at x=-a, Q at x=+a. What is force on q at (0, y)



$$\underline{F_E}(y) = \frac{2k_e Qyq}{(y^2 + a^2)\frac{3}{2}}\hat{y}$$

What if we have -|q| at (0, y)

$$\frac{-2k_e|q|Qy\,\hat{y}}{(y^2+a^2)^{3/2}}$$

In this case, force is proportional to displacement y and opposite to it so -|q| will show Linear Harmonic oscillations.

QUESTION: Why is there a force between two charges (masses) when they are far apart from one another?

To answer this we develop the concept of a FIELD

If there is a charge Q sitting at x=0, the space around it is <u>not</u> empty. Q creates a coulomb E field which permeates all of space. If you place a test charge q in this E field, it experiences a force $F_E = q E$

$GRAVITATIONAL(G_F)$ FIELD

If there is a mass M sitting at x=0, the space around it is not empty. M creates a gravitational (G_F) field which permeates all of space. If you place a test mass m in the

G field it experiences a force

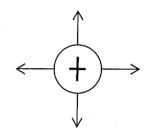
$$F_G = mG_F$$

Formal Definitions: G_F : If a stationary mass M feels a force and there is no visible agency applying the force, then M must be located in a gravitational field.

 $\underline{\underline{E}}$: If a stationary charge Q feels a force and there is no visible agency applying the force then Q must be located in an $\underline{\underline{E}}$ -field.

1. Single +ive charge Q at r=0.

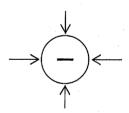
$$E = \frac{k_e Q}{r^2} \hat{r}$$



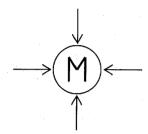
Acts like a "source" of an $\stackrel{E}{\rightarrow}$ field which points radially outward

2. Single – ive charge at r=0.

$$E = -k_e \frac{|Q|}{r^2} \hat{r}$$



Acts like a "sink" of E field which points. Radially inward.

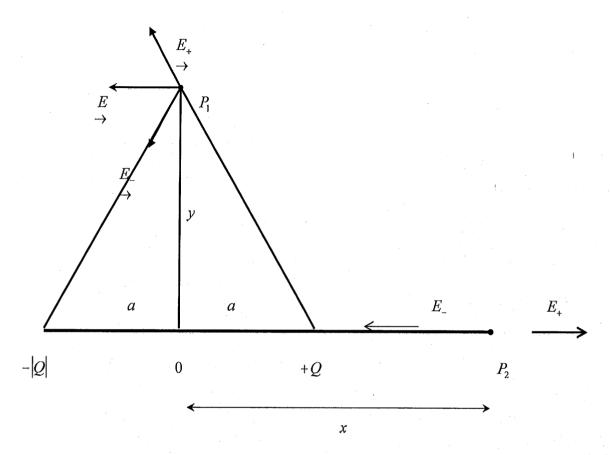


$$G_F = -\frac{GM}{r^2}\hat{r}$$

ALWAYS INWARD RADIALLY.

3.
$$E$$
 field of Dipole: $-|Q|$ at $x=-a$

$$+Q at x = a$$



at
$$P_1 = (0, y)$$
 $E(y) = -\frac{k_e 2aQ}{(v^2 + a^2)^{3/2}} \hat{x}$

at
$$P_2 = (x,0)$$
 $E(x) = -\frac{k_e 4aQx}{(x^2 - a^2)^2}$

Next, define dipole moment $p = 2aQ\hat{x}$

$$E(y) = \frac{-k_e p}{y^3}$$

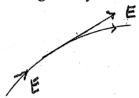
$$E(x) = \frac{2k_e p}{x^3}$$

When x,y >> a that is far away from dipole

Properties of \underline{E} -Field Lines:

Following Faraday we can visualize an \underline{E} -field by drawing \underline{E} -field lines using the following rules.

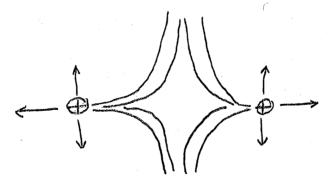
- 1. $\underline{\underline{E}}$ -field lines can start or stop only at charges or head to infinity: start at positive charges, stop at negative charges.
- 2. The direction of the \underline{E} -field is given by the tangent to the field line.



- 3. On account of 2, no two lines can intersect in space. Otherwise, the \underline{E} -field would have two directions at the same point.
- 4. The magnitude of \underline{E} is proportional to the number of lines crossing a unit area perpendicular to the lines.
- 5. In drawing \underline{E} -field lines, the number of lines must be proportional to the charge.

\underline{E} -field lines

1) Two equal positive charges



2) Dipole: -Q and +Q

